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Abstract
Purpose – The purpose of this paper is to present a methodology for forecasting the availability
off-highway trucks used in a fleet for large transport operations of ore and sterile rock from an open
pit mine.
Design/methodology/approach – This methodology enables the estimation of the number of
hours of preventive and corrective maintenance required, which are used to predict truck availability.
The authors used historical data for the maintenance strategy based on the hours of operation.
Findings – These data are statistically analyzed to obtain the key quantities and statistical models
required to project availability and to develop equipment replacement plans.
Originality/value – A methodology for forecasting availability to assets in open pit mining industry
was implemented.
Keywords Simulation, Forecasting, Maintenance, Availability, Off-highway trucks, Statistic model
Paper type Research paper

1. Introduction
Preventive maintenance requires numerous related data collection, analysis, and
forecasting steps to define the optimal intervals between maintenance practices. The
maintenance intervals can be defined in terms of elapsed hours (days, months, years) or
operation hours. Key performance indicators (KPIs) for maintenance such as
availability (A), mean time between failures (MTBF), and mean time to recovery
(MTTR) are greatly influenced by these intervals. Conversely, operational time-based
preventive equipment maintenance also requires efficient management of KPIs.

The availability of a fleet is a key management parameter to be predicted and
controlled. Kothamasu et al. (2006) state that the only way to ensure minimum
maintenance costs and a minimal probability of failure is to routinely monitor
equipment condition and failures, and to make predictions on the basis of current
conditions and historical equipment maintenance and operations.

Availability forecasting enables the anticipation of necessary corrective actions
while providing strategic information to the client about the use of the fleet during
production. The availability forecast is a key step in the maintenance management
process, whereby costs are anticipated and actions can be taken to maintain and
improve the reliability of the fleet.

The level of availability affects directly the planning of production process capacity.
According to Lustosa et al. (2008) the process of production capacity can be quantified
by the amount that can be produced. Thus, the availability establishes a direct
relationship with the production capacity since it is a measure of time in which the
equipment will be available for production operations.
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Computationally implemented mathematical models can help overcome challenges
that arise in the forecast process. These models can also help overcome the challenges
related to analysis. Several issues arise when analyses and forecasts are supported solely
by employee input regarding maintenance processes, without the benefit of appropriate
computational tools. Difficulties arise where the number of sensors and the volume of
operating data are high. Faced with complex problems, with a wide range of variables,
people tend to simplify the decision-making process and important variables can be
discarded. This can lead to choices that may appear locally correct, but are not globally
optimal (Iyer et al., 2006). In many cases, maintenance professionals cannot identify
incipient faults in the system, especially when several parameters are correlated with the
failure (Kothamasu et al., 2006). Neither can they suggest actions to prevent reductions in
availability, all of which lead to significant impacts on production.

In large open pit mines, where the number and size of assets in operation are often
high, forecasting equipment availability is a fundamental step in any effective
management process. This ability assists in the prediction of maintenance costs and
the actions required to ensure asset reliability. It is also critical for production planning
and asset management.

2. Availability(A)
To Katukoori, the definition of availability is very flexible and based largely on the
interruptions occurring during analytical operations. Some useful definitions relating
to the difficulties that arise in forecasting availability are given below.

Lavraia (2001) defines availability A(t) as a probability measure of the equipment
being in working condition at time t. Katukoori further characterizes availability as a
performance parameter that takes into account both the reliability and maintainability
of a component or system.

2.1 Point availability (Ap)
In mathematical terms, availability represents the probability of an item being
operational at time t. This value will depend on the probability that the item will not fail
until the instant t¼ t0 (reliability) and that the item can be recovered at time uo t, if a
fault has occurred previously (maintainability). These two conditions, reliability and
maintainability, competes with respect to a component or system being in operating
condition at time t. We refer to the probability of a system’s reliability, R(t), when it is
operating between 0 and t. When a system failure is recovered at instant u, where
0ouo t, we refer to the probability of the system’s maintainability, M(t), given by
Equation (1), where m(u) is the recovery density function (Katukoori, 1995):

M tð Þ ¼
Z t

0
R t�uð Þm uð Þdt (1)

thus the instantaneous or point availability, Ap(t), is given by Equation (2):

Ap tð Þ ¼ R tð Þþ
Z t

0
R t�uð Þm uð Þdt (2)

2.2 Inherent (Ai), achievable (Aa), and operational (Ao) availabilities
In the study and analysis of availability, there are three useful definitions, as
described below.
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2.2.1 Inherent availability (Ai ). Inherent availability considers only those features
estimated in the design phase for calculating reliability and maintainability. Inherent
availability can be calculated using estimated values of MTBF (reliability) and MTTR
(maintainability), respectively, during the equipment design phase, as shown in
Equation (3):

Ai ¼
MTBF

MTBFþMTTR
(3)

Inherent availability does not generally include administrative inherent time delays or
logistics that are beyond the control of the designer; nor are the preventive
maintenance times considered.

2.2.2 Achievable availability (Aa). Achievable availability considers the corrective and
preventive maintenance times. It is the expected availability of the equipment, following
the advanced design of the equipment and facilities. It assumes an environment in which
there is optimal support and all necessary spare parts, tools, and manpower are available
without delay (Keeter). Achievable availability is specifically geared to the equipment
characteristics and does not consider operational or logistical factors.

Equation (4) may be used to calculate achievable availability:

Aa ¼
OT

OTþMCTþMPT
(4)

OT (operational time) is the time period during which the equipment is available,MCT
(maintenance corrective time) is the time required for performing corrective
maintenance, excluding inspections before or after maintenance, administrative time,
or delays in the delivery of parts, and MPT (maintenance preventive time) is the total
time required for performing preventive maintenance.

The achievable availability curve determines the optimum level that is possible with
respect to availability. It is important to consider location and the nature of this curve
so that maintenance and operations managers do not inadvertently overspend or
overcharge maintenance resources while attempting to achieve performance beyond
what is actually possible (Katukoori, 1995).

2.2.3 Operational availability (Ao). With operational availability, all times are
considered, including the times required for corrective and preventive maintenance,
administrative functions, and logistical delays. This value is more realistic than the
previous two and is the availability that the customer actually experiences. It is
generally defined by the following equation:

Ao ¼
CH�MH

CH
(5)

where CH (calendar hours) is the total time and MH (maintenance hours) is time in
hours in which the equipment is in maintenance.

As noted by Katukoori, operational availability is essentially a posteriori availability
based on real system events, while the previous availability estimates are based on a
priori models and probability distributions of system maintenance time failures.

Since, in this study, we are interested in forecasting availability for an actual
operation, we use operational availability. Figure 1 shows schematic curves of inherent,
reachable, and operational availability.
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2.3 Maintenance hours (MHs)
Historical data include records of MHs from previous years.

The time values regarding maintenance incidents recorded in the data sources may
be classified into two groups, as described below.

2.3.1 Hours of corrective maintenance (HCM). These hours are those accrued owing
to the maintenance or repair of equipment returned to operation after unexpected failures,
including repair times, administrative delays, and the preparation and logistics associated
with this type of failure. Failures related to the hours spent in corrective maintenance are
generally seen by the user (Dhillon, 2002) and negatively impact planning.

2.3.2 Hours of non-corrective maintenance (HNCM). HNCM values include all
instances of maintenance that were planned in advance. These include preventive and
predictive maintenance, administrative delays, and the preparation and logistics
associated with this type of maintenance.

Preventive maintenance includes all actions performed in a planned manner and at
defined intervals to keep items or equipment in working condition through a process
involving the inspection, replacement, and reconditioning of components. Predictive
maintenance uses modern methods of measurement and signal processing to
accurately diagnose the condition of equipment during operation (Dhillon, 2002).

In this study, we make no distinction between the hours of preventive maintenance
and those of predictive maintenance.

2.4 Service hours (HORs)
In this study, we report the availability, hours, and maintenance parameters obtained
for the lifetime of the assets considered. Asset lifetime is given in hours of engine
operation, typically referred to as HORs.

3. Historical data
We accessed available historical HOR records (see Subsection 2.4) for 99 large mining
off-highway trucks (240 tons).
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Figure 1.
Schematic curves of
inherent, reachable,

and operational
availability
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We also obtained maintenance records for the occurrence of corrective and
non-corrective MHs (see Subsections 2.3.1 and 2.3.2) for the range in years from
2010 to 2013.

3.1 Treatment of historical data
3.1.1 Processing of HORs. We generated a time series using values from the HOR
records, with one day of rest for each asset. For the days when records were
unavailable, we made a linear interpolation of the values to generate sets for the time
series. As readings typically occurred at less than 24 h intervals, these interpolations
did not significantly affect the data.

Since the registration information of several assets was shown to have inconsistent
HORs, we processed the data to eliminate errors. We also found various database
inconsistencies due to the following reasons:

(1) entry errors in the recorded HOR readings;

(2) procedural inconsistencies and incorrect HOR records; and

(3) loss of early historical data for the equipment.

Thus, these records provided an active log of HORs for the analysis period. The graph
in Figure 2 shows data records from an available asset, for which inconsistent data
were excluded using a Hampel filter (Pearson), and the subsequently generated time
series (blue line).

Using these historical time series of the HORs for all assets of the fleet, we
constructed a graph of the average daily variation of HORs. To reduce the number of
calculations required, we ranked the data by the daily average variation, at 100 h
intervals, in the lifetime of each asset. We then obtained log variation values for the
average HORs for the 100 h lifetime range of each of the fleet assets, with the results
shown in Figure 3.

From our analysis results, we observed at least four distinct phases in the lifetime of
an asset:

(1) the first phase shows a high degree of variation in the recorded HORs-
approximately 20 h/day, from 0 to 10,000 h of asset lifetime;

(2) in the second phase, there is a sharp drop in the daily variation (approximately
19-15 h/day) from 10,000 to 20,000 h in the HOR records;
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Figure 2.
Time series, with
one-day time
intervals, based on
historical service
hour records
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(3) in the third phase, the variations show a smaller drop (approximately 15-14 h/
day) from 20,000 to 35,000 h of asset lifetime; and

(4) in the fourth phase, the variation increases again after 35,000 h of asset lifetime.

Each of these phases is strongly characterized by the data’s variability, with the last
phase showing even higher variability. In this study, we separated these asset lifetime
stages using a clustering algorithm, and considered the mean values of each phase and
all their associated variabilities.

We also note that the changes represent a record of the HORs of engine operation.
This measure reflects the efficiency of assets and takes into account both their
operational availability and use. Utilization (U ) is the percentage of time that the asset
is available and stays in operation. The values of U are not modeled in this study since
this external variable was unavailable, being controlled only by the user.

3.1.2 Hours of maintenance treatment. The points in the graph of Figure 4 compose
a sample of the durations of the fleet’s daily occurrences of corrective maintenance
between 2010 and 2013. We reduced the amount of data required using an average of
100 h track of lifetime each asset, as was followed for the HORs, to obtain the graph
shown in Figure 5.

The Figure 6 graph shows the sample time durations of non-corrective maintenance.
The Figure 7 graph shows the daily average values for each group at 100 h intervals of
asset lifetime.
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As expected in the early lifetime of the assets, values for HCM and HNCM are smaller,
and those at the end of asset lifetime are higher. The variability follows the same trend
as the daily variation of recorded HORs.

3.1.3 52-weeks map. A common practice in maintenance management is to establish
a plan for preventive maintenance based on operating hours (HORs). In this case,
stoppages for reviews, recovery, and replacement of components are established at
regular intervals, and the duration of these stoppages are known and may be estimated
as the hours spent in preventive maintenance. For example, in the maintenance plan
held in off-highway trucks at every 250 HORs, the standard time for preventive
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maintenance established by manufacturer and maintenance team is four hours, being
carried out tasks as component inspections, exchange, and filter cleaning, safety items
testing and collects of fluids of engine and hydraulic systems for analysis.

These plans, known as 52-weeks maps, refer to scheduled stoppages over the
year. While they often do not record the associated administrative and
logistical delays, they are often used to predict times during which there are no
corrective shutdowns.

Figure 8 shows a sample 52-weeks map for the review of a planned asset for the year
2016. Figure 9 shows a 52-weeks map regarding the exchange of components planned
for the entire fleet of assets. The two maps indicate the duration periods anticipated for
the revision and replacement of components, and may be used to estimate the times
required for non-corrective maintenance.

4. Forecast models
The availability forecast methodology includes the projection of HORs and the hours
required for corrective and not-corrective maintenance. The flowchart in Figure 10 shows
the sequence of simulations performed to obtain a projection of the daily availability.

The models used in this study directly predict MHs for availability forecasting.
Another common alternative prediction methodology is the use of indirect parameters
such as the failure rates, MTBF, and MTTR. However, as discussed by Smith (2011),
the hypothesized repeatability of parameters such as the failure rate for systems is
questionable. This is because even when assuming no variability in operating
conditions and the environment, the variability can be actually high, as observed in the
available historical data. Smith (2011) also concludes that complex models can result in
misunderstandings and economic losses.

In this study, we use statistical models of relatively low complexity, which can be
implemented computationally and can also take into account the variability of data
through well-known function distributions.
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4.1 HOR forecast model
The Figure 11 histogram shows the distribution of the daily variations in HORs. It is
clear that there are two sets of data-days when the variation of recorded HORs is 0 and
days when the variation behaves according to a statistical distribution.

We use a binomial distribution as statistical model to providing the option of choosing
whether the variation in the HORs is 0, and a Weibull distribution to simulate the
variation in the registered HORs on days when the variation was greater than 0.

Using a Weibull distribution to model the variation in daily HORs, we improved the
accuracy of the models. The data ofHORs variation are separating into clusters obtained
from a k-means ( Jain, 2010; Hartigan andWong, 1979) algorithm. Then, we generated the
statistical model (Weibull 2p) for each cluster, which allowed us to project the average

HOR
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HCM
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Use
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HNCM
Projection

Get HNCM
from reviews
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Figure 10.
Flowchart of the
methodology used
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values and simulate dispersions in the mean changes. The graph in Figure 12 shows the
Weibull curves for each cluster.

Thus, for an asset in the range 0-3,500 recordedHORs, the average daily variation in
HORs is 20.5 h, the first quartile is 19.9 h and the third quartile is 20.9 h. In the range
49,200-51,800 HORs, we obtained daily variation values of 10, 12.9, and 15.9 h for the
first quartile, the average, and the third quartile, respectively.

4.2 HCM forecast model
The Figure 13 histogram shows the distribution time for corrective maintenance.

Then the variations of HORs were clustered, we established a statistical model to
HCM for each cluster. We then adopted an exponential distribution to this HCM in
which the simulation takes into account the average values and the dispersion of this
distribution in each cluster. The plots in Figure 14 shows the clusters and the HCM
exponential data models adopted for each one.

4.3 HNCM forecast model
We performed the HNCM forecast using two methods for comparing their
performances. In the first, we obtained the hours from the 52-weeks map, and in the
second, we used statistics from the HNCM and HOR models.

4.3.1 52-weeks map. We obtained the HNCM values by observing the dates for
which revisions and replacements of components were provided in the 52-weeks map.
Tables I and II show some examples of the time durations considered. See Figures 8 and 9.
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4.3.2 HNCM model. The second method for obtaining the HNCM follows the same
procedures as those for obtaining the variations of HOR and HCM. The histogram
of Figure 15 shows the time distribution for HNCM and Figure 16 shows the graph of
the statistical model. We used exponential distribution curve models.

5. Simulations and results
The procedure begins with simulation calculations of the daily variations registered
with respect to the HOR clusters shown in Figure 12. This allows the machine to
predict the HORs at a specified future date. Then, we simulated the time for HCM
according to the clusters’ statistical models shown in Figure 14. Finally, we simulated
the durations of HNCM, which can be obtained using the projections of the 52-weeks
map (see Figures 8 and 9) or the statistical models shown in Figure 16.
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Figure 14.
HCM statistical
model

Asset Date Revision Duration

CM18 2015-06-09 250 4
CM18 2015-06-13 500 15
CM18 2015-07-18 250 4
CM18 2015-07-24 1,000 21
CM18 2015-09-16 250 4
CM18 2015-09-27 500 15
CM18 2015-10-11 250 4
CM18 2015-10-21 6,000 35

Table I.
52-weeks map
example of revision
time data for
an asset

Asset Component Date Duration

CM35 Final drive left side 2017-03-24 15
CM35 Final drive right side 2018-12-11 15
CM35 Torque converter 2017-11-14 18
CM35 Diesel motor 2017-11-14 47
CM35 Transmission 2018-05-02 10
CM35 Differential 2018-06-30 13

Table II.
52-weeks map
example of asset
component
replacement times
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With time, we can estimate the operational availability of a given day using
Equation (5), where HM¼HCM+HCNM, and provide a monthly average for an
operating fleet within a specified confidence interval.

Figure 17 shows the averaged results of a simulation at 100 h intervals of the
operation of fleet assets until they reach 50,000 h of operation. We simulated HNCM
using the history in Figure 16.

Table III shows numerical prediction results for an active truck for the year 2014. The
table columns show, respectively, the month of the forecast, the expected HORs, and the
prediction of A, considering the HCM and HNCM based on historical data, with an
85 percent (AHL, bottom of the range), 50 percent (AH, average), or 15 percent certainty
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levels (AHH, upper limit of the range). Next we based the prediction of A on the HCM
from historical data and on the HNCM hours from the 52-weeks map, obtaining 85 percent
(AML, bottom of the range), 50 percent (AM, average), and 15 percent certainty levels
(AMH, upper limit of the range). Table IV shows the values obtained for an entire fleet
of 99 trucks.

This range of certainty allows managers to make choices that are more conservative
(85 percent), typical (50 percent), or challenging (15 percent).

The 52-weeks map could not predict administrative and logistical time delays
(inefficiencies maintenance planning). Therefore, the resulting HNCM schedules based
on 52-weeks map were underestimated in the simulation and the values in Tables III
and IV to 52-weeks map are higher.

The data in the two tables above are for fleets with no assets replacements, so the
average age of the fleet increased. Figure 18 shows the projection curve for the next five
years for a fleet making no assets replacements, considering the HNCM predicted from

Ativo CM99
AHL (%) AH (%) AHH (%) AML (%) AM (%) AMH (%)

HOR 85% 50% 15% 85% 50% 15%

jan/14 11,968 89.25 90.50 91.54 84.32 88.66 93.16
fev/14 12,502 88.19 89.43 90.60 90.61 92.58 95.03
mar/14 13,088 82.90 84.83 86.95 85.44 88.72 91.32
abr/14 13,545 87.39 88.59 90.20 66.04 73.37 81.41
mai/14 14,088 82.96 84.41 86.71 81.57 85.98 90.77
jun/14 14,589 88.14 89.31 90.40 90.12 92.48 94.40
jul/14 15,096 90.00 90.99 92.34 90.46 93.23 96.31
ago/14 15,619 78.29 81.02 84.28 81.58 84.72 88.28
set/14 16,086 79.40 81.53 83.36 79.07 84.44 88.26
out/14 16,588 73.83 77.59 80.66 85.63 88.12 90.80
nov/14 17,062 83.12 84.74 86.78 85.90 89.41 92.23
dez/14 17,458 76.32 78.86 80.76 57.59 64.99 72.39
2014 17,458 83.32 85.15 87.05 81.53 85.56 89.53

Table III.
Table of simulation
results for
truck CM99

Frota
AHL (%) AH (%) AHH (%) AML (%) AM (%) AMH (%)

HOR 85% 50% 15% 85% 50% 15%

jan/14 28,450 75.04 78.10 81.24 81.82 85.45 89.01
fev/14 28,831 75.34 78.31 81.40 81.27 84.99 88.73
mar/14 29,266 74.83 77.89 80.81 79.76 83.61 87.54
abr/14 29,690 76.20 78.99 81.82 80.15 84.09 87.93
mai/14 30,121 74.34 77.42 80.49 79.49 83.41 87.26
jun/14 30,288 75.64 78.56 81.47 80.29 84.01 87.81
jul/14 30,715 74.94 77.87 80.86 79.10 83.10 87.03
ago/14 31,139 74.73 77.83 80.96 79.02 83.19 87.26
set/14 31,548 74.04 77.21 80.49 79.47 83.37 87.51
out/14 31,949 74.96 78.01 81.07 75.63 80.46 85.19
nov/14 32,348 73.30 76.51 79.65 78.45 82.48 86.48
dez/14 32,532 72.14 75.43 78.80 78.76 82.65 86.70
2014 32,532 74.62 77.68 80.75 79.43 83.40 87.37

Table IV.
Table of simulation
results for
entire fleet
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historical data. The curve of the recorded HORs shows a growth of over 16,000 h and the
availability curves for the provided fleet. The upper curve indicates the challenging case,
the intermediate curve the typical case, and the bottom curve the conservative case.

Figure 19 shows projection curves for the next five years for the fleet with assets
replacement for the HNCM predicted from historical values.

The operational availability values in the first two months of 2014 were 74.50 and
76.33 percent in the region close to that considered conservative. Figure 20 shows the
expected curves of the challenging, typical, and conservative values for the first two
months of 2014.

6. Conclusion
The availability forecasting should be done with great care and a thorough conceptual
knowledge of the various methods for determining the optimal time to be spent on
maintenance. An appropriate choice is to use the definition of operational availability
that includes the customer’s perspective regarding service maintenance.
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Figure 18.
Result for five-year
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Results for five-year

simulation where
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Seemingly accurate models of prediction parameters may be incompatible with highly
variable historical data. This variability is a relevant factor in decision making based
on operational availability forecasting. Simulations allow us to consider availability
average A values, and the associated variability, which can provide a broader and more
useful scope regarding asset predictions.

We note that historical estimates based on hours of corrective and non-corrective
maintenance models are more consistent with reality because they consider the current
state of the maintenance process. Models based on 52-weeks maps, usually incomplete
because they cannot map the logistical and administrative delay times, can provide
overestimated availability predictions.

The case study values for the first two months of 2014 (74.50 and 76.33 percent)
indicate that projection results using this methodology are appropriate since they
indicated with 85 percent certainty that the monthly operational availabilities were
down 75.34 percent in the first two months.

The results and analysis indicate that this methodology can also be used for treating
data and performing the simulations necessary for predicting the expected lifetime and
availability of fleet assets.
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